Code: 20EC6502

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

ADVANCED DIGITAL MODULATION AND CODING TECHNIQUES

(HONORS in ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks				
	UNIT-I								
1	a)	Explain the Generation and Demodulation	L2	CO1	7 M				
		of Phase Shift Keying Process.							
	b)	What is Continuous Phase Modulation and	L2	CO1	7 M				
		discuss Minimum Shift Keying techniques.							
OR									
2	a)	Explain the need of Digital Modulation &	L2	CO1	7 M				
		Discuss advantages and disadvantages of							
		Digital Communication.							
	b)	Examine the Generation and Demodulation	L4	CO1	7 M				
		of Frequency Shift Keying Process.							
UNIT-II									
3	a)	Distinguish between Parallel and Serial	L4	CO2	7 M				
		Concatenations.							

	b)	Discuss in detail about Concatenated	L2	CO2	7 M
		Convolution codes.			
		OR			
4	a)	Demonstrate the procedure of Turbo	L3	CO2	7 M
		decoding.			
	b)	Examine the iterative decoding technique of	L4	CO2	7 M
		product codes with example.			
				1	
		UNIT-III			
5	a)	Explain the importance of LDPC codes in	L2	CO4	7 M
		5G technology.			
	b)	Discuss log-likelihood ratio Decoding	L2	CO4	7 M
		procedure in LDPC codes.			
		OR			
6	a)	Explain SISO decoders for repetition.	L2	CO4	7 M
	b)	Discuss the Encoding procedure of LDPC	L2	CO4	7 M
		codes.			
		UNIT-IV			
7	a)	Discuss in detail about Iterative APP Pre-	L2	CO3	7 M
		processing and Per-layer Decoding.			
	b)	Compare Digital Modulation Schemes.	L4	CO3	7 M
		OR			
8	a)	Explain in detail about Alamourti's scheme	L2	CO3	7 M
		for more than two antennas.			
	b)	Explain the procedure to generate Time	L2	CO3	7 M
		Block codes with an example.			

UNIT-V								
9	a)	Explain the following polar codes with	L2	CO4	7 M			
		example:						
		i) Generator Matrix						
		ii) Binary tree.						
	b)	Discuss the procedure of Successive	L2	CO4	7 M			
		cancellation decoder for polar codes.						
OR								
10	Exp	plain the encoding procedure of frozen bits	L2	CO4	14 M			
	and information bits in polar codes.							